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Mean escape time over a fluctuating barrier

Jan Iwaniszewski*
Institute of Physics, Nicolaus Copernicus University, Grudzia¸dzka 5, 87-100 Torun´, Poland

~Received 3 October 2002; published 25 August 2003!

An approximate method for studying activation over a fluctuating barrier of potential is proposed. It involves
considering separately the slow and fast components of barrier fluctuations, and it applies for any value of their
correlation timet. It gives exact results for the limiting valuest→0 and t→`, and the agreement with
numerics in between is also excellent, both for dichotomic and Gaussian barrier perturbations.
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Ever since Kramers’ seminal paper@1# the fluctuational
escape over a potential barrier has been a paradigm f
thermal activation process. Recently, activation in the pr
ence of time-varying fields has become a subject of g
interest due to the discovery of many counterintuitive noi
assisted effects, such as stochastic resonance@2# or transport
in Brownian motors@3#. The nonequilibrium character o
these problems hinders, however, the direct application
many ideas and methods developed for investigation of
static Kramers problem@4# ~e.g., detailed balance or rat
concept!. On the other hand, as the time scale of variation
the driving signal is independent of the internal dynamics
the system, standard adiabatic methods are restricted to
tain ranges of parameters only. Hence, an approach w
overcomes these difficulties and applies for the whole ra
of time variability of the perturbation is of great importanc

In this Brief Report, we address this problem for an ac
vation over a randomly fluctuating barrier. The subject
interesting not only due to its ubiquity in many branches
physics, e.g., in relation to ligand binding to heme prote
@5#, transport processes in glasses@6#, or dye laser with a
fluctuating pump parameter@7#, but especially because of th
phenomenon ofresonant activation@8#—the appearance of
minimum of the mean activation timeT as a function of the
correlation timet of barrier fluctuations. The dependen
T(t) can be calculated exactly merely for simple mod
@8–10#, for more general cases the approaches@11–15# pro-
posed till now apply to some ranges oft only. Irrespective of
the technical differences, they are all based on the rate
cept, which assumes a quasistationary equilibrium before
activation happens and applies fort!T, and/or kinetic de-
scription fort@ ln(1/q) (q states for the thermal noise inten
sity! when the escape events are uncorrelated with the po
tial variations. Although for small enoughq in an extended
region ln(1/q)!t!T both approximations coexist and giv
similar results@11#, nevertheless the proper smooth conn
tion between them remains the main theoretical challen
Below we present an approach which is valid for anyt. It
gives exact values ofT(t) in the limitst→0 andt→`, and
a very good approximation in between.

We study an overdamped Brownian particle driven by
~thermal! Gaussian white noisej(t) of zero mean, which
moves in a stochastically varying potential. Its static p
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U(x) has a monostable or bistable form and the random
V(x)z(t) is generated by a stationary Markovian noisez(t)
of zero mean and correlationC(t)5Q/texp(2utu/t). Follow-
ing Refs.@16,17# we assume a general form for its intensi
Q(t)5Q0ta (0<Q05const, 0<a<1), which gives the
mostly studied cases witht-independent intensity (a50) or
variance (a51) as special cases. Two types ofz(t) are con-
sidered: an Ornstein-Uhlenbeck noise~OUN! which is
Gaussian with varianceD5Q/t and a dichotomic noise
~DN! which flips between two values6AD with the rateg
51/(2t). Although they essentially differ—the former i
continuous, the latter discrete—nevertheless, they influe
the activation process very similarly@18# and the main steps
of the presented description are the same. The dynamic
the system is given by the non-Markovian Langevin equat

dx

dt
52U8~x!2V8~x!z~ t !1j~ t !. ~1!

Introducing the two-dimensional Markovian stochastic p
cess$x(t),z(t)% one can formulate the evolution equation f
the joint probability distributionP(x,z,t):

]

]t
P~x,z,t !5@L~x,z!1L~z!#P~x,z,t !, ~2!

where L(x,z)5(]/]x)@U8(x)1V8(x)z#1q(]2/]x2) is the
Fokker-Planck~FP! operator. The free evolution of the ba
rier noise is governed by the operatorL(z)51/t@(]/]z)z
1Q]2/]z2# for OUN or by the matrixL5(2g,g;g,2g)
for DN. Initially the particle is located at the bottomxb of the
well and the quantity of interest is the mean first pass
time ~MFPT! through a given thresholdxthr located either at
the topxt or far from it on the other side of the barrier.

A typical scenario of an escape event consists of t
stages. For a long timetb , the particle fluctuates in the vi
cinity of the bottom of the well, being subjected to sma
random impacts ofj(t). If a large enough outburst ofj(t)
occurs, the particle will eventually surmount the barrier
most immediately during a short timet t . The time variation
of the potential exerts only a negligible effect on the fi
stage, but it can essentially modify the dynamics during
second one when the particle interacts with the whole sl
of the barrier. Any realization ofj(t), which has been sup
posed to bring the particle over the top of a static barr
may turn out to be insufficient if the barrier rises during t
©2003 The American Physical Society05-1



th
ou
e

n

se
en

-

he
th
-

ne

o

y

e-
f

ise
la
en
th
th

h
ic
me

val
me
of
at

s of
r.
ra-
h to

ost

nto
ical

e
. Its

em

by

rm

lu-

to

he
e

ult

BRIEF REPORTS PHYSICAL REVIEW E68, 027105 ~2003!
climbing stage. On the contrary, if the barrier decreases
particle does cross to the other side, but some smaller
bursts ofj(t) would also result in a successful escape. B
cause the rate of variation of the barrier shape depends o
correlation time ofz(t), the relationship betweent t and t
appears to be crucial in the analysis@17#.

This discussion leads us to the central idea of the pre
approach—splitting the barrier noise into two independ
components:

z~ t !5zs~ t !1zf~ t !. ~3!

The slow onezs is defined as the mean value ofz over the
time interval of climbing (t,t1t t) and over its possible real
izations~marked by^•••&)

zs~ t !5K 1

t t
E

t

t1t t
dsz~s!L 5

1

D
~12e2D!z~ t !, ~4!

where D5t t /t. It is supposed to be constant during t
climbing stage, while its random character arises from
randomness ofz(t). Hencezs is governed by the same sta
tistics asz but with the variance

Ds5^zs
2&5

Q

tt

1

D
~12e2D!2. ~5!

Next, assuming that the fast partzf(t), which gives rapid
fluctuations aroundzs(t), can be treated as uncorrelated, o
calculates its intensityQf :

Qf5QF12
1

D
~12e2D!2

1

2

1

D
~12e2D!2G . ~6!

If z(t) is Gaussian it can always be written as the sum
two independent Gaussian components~3!. So, in the OUN
case bothzs(t) andzf(t) are OUN’s with correlation timet
and they differ only in the form of their intensities~vari-
ances! Di5Qi /t ( i 5 f ,s). If t→0 one hasQf5Q, while
the leading-order term ofQs readsQ/D2 so for anya it
vanishes at least linearly witht. Thus one is left with only
the fast part ofz(t). In the opposite limitt→`, the leading
term of Qf becomesQD2/3, soD f vanishes at least linearl
with 1/t, while Ds5D. Only the slow part ofz(t) survives.
One can check that, ignoring the dependence ofQ on t, the
intensitiesQf and Qs are monotonic functions oft. While
for t50 one has the white-noise limit ofz(t) with rapid
fluctuationszf(t), an increase oft increases the role ofzs at
the expense of decrease of the intensity ofzf , eliminating it
completely ast→`. Thus the fundamental difference b
tween zs(t) and zf(t) consists in the different regimes o
values oft in which they exist:zs(t) occurs fort*t t and
hence fluctuates slowly, whilezf(t) persists fort&t t and
varies rapidly. Only fort;t t do they coexist.

A similar summation property to that for Gaussian no
does not apply to the dichotomic noise — one cannot disp
a given dichotomic noise as the sum of two independ
dichotomic noises. However, the great similarity between
statistical properties of OUN and DN suggests treating
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DN case in the same way. The definitions~3! and~4! involve
the asymmetric character of two-state noisezf(t) and its de-
pendence onzs(t), but for simplicity we assume that bot
zs(t) and zf(t) are symmetric, independent dichotom
noises of zero mean. Since OUN and DN have the sa
correlation function, the formulas~4!–~6! apply to the DN
case as well.

We should also determine the value of integration inter
t t . For an unperturbed potential, it equals the relaxation ti
t r from the top to the bottom of the well, but fluctuations
the potential lead to far-from-equilibrium conditions, so th
this equality does not hold@19#. However, we do not intend
here to consider the relationship between the processe
climbing up and relaxing down the fluctuating barrie
Rather, we need a tool for calculating the order of the du
tion of the second stage of the escape event. It is enoug
take for it the value oft r for a static barrier, which may be
calculated as the MFPT from the topxt to the bottomxb of
the well. It is shown in Fig. 1 that our results depend alm
unnoticeably on the variation oft t within the range of tens of
percent. A more careful analysis would require us to take i
account, not only the mean value, but also the statist
distribution of relaxation times@15#.

Using the decomposition~3!, the escape problem may b
considered as a three-dimensional Markovian process
joint probability distributionP(x,zf ,zs ,t) evolves accord-
ingly to the FP equation similar to Eq.~2! but with two L ’s
operators forzf andzs ~with Qf or Qs instead ofQ, respec-
tively!, andz5zf1zs in L(x,z). Such a formulation allows
for a clear separation of different time scales of the syst
dynamics. Since, by definition,zs remains constant while the
particle climbs the barrier, its dynamics may be analyzed
the kinetic approach. On the contrary,zf vanishes fort
slightly greater thant r , but still for t!T, so rate theory
applies. Thus we seek the probability distribution in the fo
P(x,zf ,zs ,t)5p(x,zf ,t;zs)r(zs ,t) @20#.

The fast equilibration process is described by the evo
tion of p(x,zf ,t;zs), which is governed by the equation

]

]t
p~x,zf ,t;zs!5@L~x,zf ;zs!1L~zf !#p~x,zf ,t;zs!, ~7!

whereL(x,zf ;zs)5(]/]x)@U8(x;zs)1V8(x)zf #1q(]2/]x2)
and the slow component of barrier fluctuations gives rise
different forms of potential configurationsU(x;zs)5U(x)
1V(x)zs . Following a standard method, one looks for t
quasipotentialF being the dominant exponential term of th
reduced ~quasi!stationary probability distribution
^p(x,zf ;zs)&zf

5p(x;zs);exp@2F(x;zs)/q# of Eq. ~7!. For
the DN case, we obtain an equation

F8~x;zs!@U8~x;zs!2F8~x;zs!#
2

5
q

t
@G~x!F8~x;zs!2U8~x;zs!#, ~8!

whose middle~of the three always real! solution gives the
quasipotential. This equation is formally similar to the res
of Reimann and Elston@12#, who consider the caset!T,
5-2
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however. The only difference is the form of diffusion fun
tion G(x)511(Qf /q)V8(x)2. In Ref. @12# the total noise
intensityQ is used, which gives an improper limiting valu
of F8 for t→` for a51. HereG(x) depends onQf , which
vanishes for anya ast→`, so one obtains the exact expre
sionF8(x;zs)→U8(x;zs). In the opposite limit oft→0, the
solution of Eq.~8! converges to the exact formU8(x)/G(x).
This suggests to deal not with the quasipotential but ra
with an effective one

Ue f f8 ~x;zs!5F8~x;zs!G~x!. ~9!

Finally, exploiting the well-known form of the exact F
equation in the white-noise limit@21#, one can write the ef-
fective FP operator

Le f f~x;zs![
]

]x
Ue f f8 ~x;zs!1q

]

]x
AG~x!

]

]x
AG~x!, ~10!

which governs the fast part of the evolution.
A convenient way of finding the quasipotential in th

OUN case formulates the problem by means of path inte
or Hamiltonian techniques@22#. In general, the problem can
not be elaborated analytically, but asymptotic expressions
small and larget, are available@11,13#. To attempt an inter-
polation between the two limits oft we construct a 2-2 Pad´
approximant@23#:

F8~x;zs!5
U8~x;zs!

G~x!

3
11t2QfV8~x!2W~x;zs!/G~x!1t2W~x;zs!

2

11t2W~x;zs!
2/G~x!

,

~11!

with W(x;zs)5@G(x)/V8(x)#@U8(x;zs)V8(x)/G(x)#8. One
can note that as a function oft expression~11! has no sin-
gularities and it monotonically increases witht, which is an

FIG. 1. Relative mean escape timeT/Ts versust for DN case
with a triangle barrierU(x)510(12uxu) and V(x)512uxu con-
fined to the interval (21,1) for Q051, q51, xthr50, t r50.09,
anda50, 0.25, 0.50, 0.75, and 1.0 from the bottom to the top
the left-hand side, respectively. Solid lines show the exact res
and the others the approximation~13! for few values oft t .
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anticipated property of quasipotential@13,22#. As for DN, we
may also introduce an effective potential~9!. Using Eq.~10!,
calculation of the MFPTT(zs) for both types of barrier noise
is straightforward.

In the slow time scale, the evolution of the system
governed by the Smoluchowski equation with a sink term

]

]t
r~zs ,t !5@L~zs!2k~zs!#r~zs ,t !. ~12!

It describes stochastic switchings between the potential c
figurations of differentzs and an escape process from each
them@k(zs)5m/T(zs) with m51/2 for xthr5xt , or m51 for
xthr far from it#. One gets the mean escape time integrat
r(zs ,t) over tP(0,̀ ), and summing/integrating overzs for
DN/OUN. For the dichotomic switching, the result is imm
diate:

T5
2T1T21mt~T11T2!

T11T212mt
, ~13!

whereT6 are the MFPT’s forU6(x)5U(x)6ADsV(x), re-
spectively. Although Eq.~13! resembles the well-known so
lution @9,24# of a very simple set of equations~12!, which
constitutes the long-t approximation of the problem@12#, the
dependence ofT1 and T2 on Qf(t) involves also the fast
part of the dynamics in formula~13!.

The problem is much more complicated in the OUN ca
To the best of the author’s knowledge, there is no univer
approximation of Eq.~12! valid for any t @25#. One may
calculate asymptotic expressions for small and larget
@11,26# and construct a Pade´ approximant to interpolate in
between; however, the complicated exponential depende
of expansion terms on the amplitude of fluctuations yield
very bad approximation@27#. Hence, in what follows, we
solve Eq.~12! numerically.

To test the method, we take the triangular barrier mo
@8# with DN. In Fig. 1, we plotT(t)/Ts (Ts is the MFPT for
a static barrier! for the exact analytical results and for th
present method, in each case for few values ofa. The relax-

n
lts

FIG. 2. Relative mean escape timeT/Ts versust for OUN case
and the system withU(x)5x4/42x2/2, V(x)5U(x)11/4 for uxu
<1, and V(x)50 elsewhere, forq50.08, Q050.8, t t5t r /2
51.26, and three values ofa. The lines present our approximatio
and markers are from the numerical simulation of Eq.~1!.
5-3
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BRIEF REPORTS PHYSICAL REVIEW E68, 027105 ~2003!
ation time calculated from the exact formula@15# for the
MFPT from xt50 to xb51 equalst r50.09. We show three
sets of curves witht t5t r , t t5t r /2, andt t5t r /4, respectively.
The agreement with the exact plot is very good, but in
interval 1023,t,1021 our method gives slightly lower val
ues. We have found the smallest deviation fort t5t r /2, but
even whent t is twice as large or small the difference is st
not very significant. This validates the way we estimate
interval of integrationt t in Eq. ~4!. For simplicity in the next
example we uset t5t r /2, but to be more precise, for eac
system a careful analysis of its best value should be d
@27#. In Fig. 2, we displayT(t)/Ts for OUN case and three
values ofa. The agreement between the theory and num
cal simulation of Eq.~1! is very good, but also with som
underestimation in the region of the resonant activat
minima. The results for other systems and other values
parameters are also excellent@27#.

To conclude, we have presented a method of investiga
of thermal activation in the presence of barrier fluctuatio
for arbitrary duration of their correlation. Dividing the ba
rier noise into two components—the slow and fast ones—
can separate two time scales of the evolution of the sys
02710
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for any value oft and use both rate and kinetic approach
in the analysis without any sewing procedure. The noise
vision is done through an averaging over a finite interval
time t t ~4!, hence we call the approacha partial noise-
averaging method~PNAM!. For a dichotomic perturbation
formula ~13! together with the MFPT obtained for the F
operator~10! provides the analytical expression for the d
pendenceT(t) for any tP@0,̀ ), for arbitrary potentials
U(x) andV(x), and a large class of noises. For the OUN w
had to use a computer at the final step, but the accordanc
the present result with the full-numerical ones confirms
power of PNAM. Although the method is presented in term
of MFPT, it can be expressed by means of any of the st
dard approaches@4# to the activation process. We hope al
that the presented idea of splitting the noise could be us
in other problems where different time scales coexist, m
ing the proposed approach valuable for many application
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